A Gradient-based Sampling Approach for Dimension Reduction of Partial Differential Equations with Stochastic Coefficients
نویسندگان
چکیده
We develop a projection-based dimension reduction approach for partial differential equations with high-dimensional stochastic coefficients. This technique uses samples of the gradient of the quantity of interest (QoI) to partition the uncertainty domain into “active” and “passive” subspaces. The passive subspace is characterized by near-constant behavior of the quantity of interest, while the active subspace contains the most important dynamics of the stochastic system. We also present a procedure to project the model onto the low-dimensional active subspace that enables the resulting approximation to be solved using conventional techniques. Unlike the classical Karhunen-Loève expansion, the advantage of this approach is that it is applicable to fully nonlinear problems and does not require any assumptions on the correlation between the random inputs. This work also provides a rigorous convergence analysis of the quantity of interest and demonstrates: at least linear convergence with respect to the number of samples. It also shows that the convergence rate is independent of the number of input random variables. Thus, applied to a reducible problem, our approach can approximate the statistics of the QoI to within desired error tolerance at a cost that is orders of magnitude lower than standard Monte Carlo. Finally, several numerical examples demonstrate the feasibility of our approach and are used to illustrate the theoretical results. In particular, we validate our convergence estimates through the application of this approach to a reactor criticality problem with a large number of random cross-section parameters.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015